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Abstract: This paper presents for the first time a detailed study on information content of X-band
single-pass interferometric spaceborne SAR data with respect to snow facies characterization. An
approach for classifying different snow facies of the Greenland Ice Sheet by exploiting X-band
TanDEM-X interferometric synthetic aperture radar acquisitions is firstly detailed. Large-scale
mosaics of radar backscatter and volume correlation factor, derived from quicklook images of the
interferometric coherence, represent the starting point for applying an unsupervised classification
method based on the c-means fuzzy clustering algorithm. The data was acquired during winter
2010/2011. A partition of four different snow facies was chosen and interpreted using reference melt
data, snow density, and in situ measurements. The variations in the stratification and micro-structure
of firn, such as the variations of density with depth and the presence of percolation features,
are identified as relevant parameters for explaining the significant differences in the observed
interferometric signatures among different snow facies. Moreover, a statistical analysis of backscatter
and volume correlation factor provided useful parameters for characterizing the snow facies behavior
and analyzing their dependency on the acquisition geometry. Finally, knowing the location and
characterization of the different snow facies, the two-way X-band penetration depth over the whole
Ice Sheet was estimated. The obtained mean values vary from 2.3 m for the outer snow facies up
to 4.18 m for the inner one. The presented approach represents a starting point for a long-term
monitoring of ice sheet dynamics, by acquiring time-series, and is of high relevance for the design of
future SAR missions as well.

Keywords: TanDEM-X; SAR; interferometric coherence; volume decorrelation; Greenland; Ice Sheet;
snow facies

1. Introduction

The Greenland Ice Sheet, extending for about 1,700,000 km2 over 80% of the entire Greenland
surface, represents the second largest ice body on the planet after the Antarctic Ice Sheet. Its properties
are significantly affected by temperature changes. Their knowledge can substantially contribute to a
better understanding of the arctic and its response to climate change. Melt phenomena have strongly
increased in the last years, therefore leading to modifications in the characteristics of the snow pack [1].

Previous studies of the Greenland Ice Sheet led to the definition of different snow facies, depending
on the amount of snow melt and on the properties of the snow coverage itself. Using a large number
of survey sites, C. S. Benson [2] divided the Ice Sheet into four zones, according to Figure 1. Melt does
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not occur in the dry snow zone, which is situated at the highest altitudes at the center of the Greenland
plateau. The snow is gradually compacted under its own weight and the surface layer is subject to
modifications due to wind effects. Moreover, the properties of the dry snow zone are not uniform,
since it is characterized by different levels of snow accumulations, systematically decreasing from
the southwest to the northeast regions of Greenland [3,4]. This inner region is surrounded by the
percolation zone, where a limited amount of melt per year occurs, leading to the generation of larger
snow grains and to the formation of small ice structures, like lenses and pipes, within the snow pack.
The size of such ice formations can vary from some centimeters to tens of centimeters [5]. The wet
snow zone is located further down slope towards Greenland’s coasts, where a substantial part of the
snow melt drains off during summer, and is characterized by the presence of multiple ice layers. Outer
coastal regions are finally classified as ablation zone, where the previous year accumulation completely
melts during summer, resulting in a surface of bare ice and surface moraine. Up to now, the different
facies have been located using microwave sensors by estimating the backscatter levels of the reflected
signal [6,7]. The dry snow zone is characterized by low levels of backscatter, given the absorption of
the incident radar wave; on the other hand, the presence of ice pipes and lenses in the percolation snow,
whose dimensions are comparable to the wavelength of the incident radar wave, strongly increase
the backscattered signal from such a region. The scattering mechanisms occurring in the wet snow
zone are similar to those in the percolation zone, even though a higher variability is expected during
summer, due to increased melt rates [5]. Moreover, the availability of several spaceborne SAR missions
allows for the monitoring of radar backscatter evolution in time, demonstrating the great potential of
radar to track down changes in the Ice Sheet properties [8].

The penetration of an incident radar wave on a snow pack is dependent on the sensor’s frequency
and wave polarization, and on the characteristics of the illuminated target, such as snow density and
structure, leading to volume scattering. Interferometric synthetic aperture radar (SAR) acquisitions
over the Greenland Ice Sheet are therefore subjected to volume decorrelation [9]. Its amount can be
associated to the dominant backscattering mechanism for radar waves incident onto a snow pack,
helping to classify the characteristics and structure of the snow pack itself.

Figure 1. Greenland Ice Sheet facies, classified after C. S. Benson in [2]: the dry snow zone, where
no melt occurs, the percolation zone, where a limited amount of melt per year occurs and meltwater
percolates and then refreezes within the snow pack, the wet snow zone, where a substantial part of the
snow melt drains off during summer, and the ablation zone, where the previous year accumulation
completely melts during summer.

The German SAR mission TanDEM-X has the primary goal of generating a global, high-precision
digital elevation model (DEM) with a spatial resolution of 12 m [10–12]. Since October 2010, two twin
satellites TerraSAR-X and TanDEM-X have been flying in a close orbit configuration, acting as
an X-band single-pass SAR interferometer and systematically scanning the Earth’s land masses in
bistatic single horizontal polarization stripmap mode, with a swath width of about 30 km. In this
paper we present an approach to locate and investigate different snow facies by exploiting TanDEM-X
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interferometric SAR acquisitions over the snow-covered areas of Greenland. TanDEM-X data, acquired
in X-band at 9.6 GHz, are particularly suitable for this analysis due to the single-pass bistatic capabilities
of the system, which does not suffer from temporal decorrelation [13]. As far as spaceborne SAR
sensors are concerned, this data set is unique.

The goal of classification techniques is to group together the input data in different classes on the
basis of a defined measure of similarity. The approach can either be supervised, if a priori knowledge
is introduced for defining the properties of the different classes, or unsupervised, if such classes are
directly estimated from the input data, without external additional information. Since only a few local
studies have been performed for determining the properties of the Greenland and Antarctica Ice Sheets
using X-band SAR data [14–16], only a limited a priori knowledge is available for directly defining the
characteristics of each snow facies from X-band signatures. Unsupervised classification techniques,
such as fuzzy clustering, therefore represent an attractive technique.

A first preliminary study on the potential of TanDEM-X interferometric data for snow facies
analysis using fuzzy clustering was presented in [17]. We refined the classification algorithm,
investigated its performance in detail, and performed comparisons with in situ observations to support
interpretation of the results. In Section 3 we describe the large-scale mosaics of SAR backscatter and
volume correlation factor, together with additional parameters, derived from systematic TanDEM-X
interferometric acquisitions. These mosaics are the starting point for applying the c-means fuzzy
clustering algorithm, detailed in Section 2.1. We present the obtained results in Section 4, where we also
address the use of different number of clusters. Their interpretation is discussed in Section 5, by means
of reference melt data, snow density, and in situ measurements of snow structure. A dedicated
sub-clustering of the inner snow facies allows to further refine its classification, as discussed in
Section 5.3. In Section 5.4, we present a statistical analysis of backscatter and volume decorrelation for
the derived snow facies, which allows to fit a Gaussian model to the histograms of these quantities.
Finally, knowing the location of the different facies, it is possible to estimate the X-band penetration
depth along the whole Ice Sheet, as explained in Section 6, and to compare it to an independent
estimation, obtained by composing TanDEM-X digital elevation model (DEM) data and ICESat laser
altimeter measurements. Conclusions are finally drawn in Section 7.

2. Fuzzy Clustering for Snow Facies Classification

In this section we describe the method used to classify the different snow facies of the Greenland
Ice Sheet. It is based on the use of the c-means fuzzy clustering algorithm, developed by J. Bezdek et al.
in [18], which is an unsupervised classification algorithm based on fuzzy logic theory.

In this work, two characterizing radar quantities are considered for classifying snow facies: radar
backscatter and coherence contribution due to volume decorrelation. The choice of an unsupervised
classification method resides in the fact that a gradual transition of backscattering intensity between
different snow facies on the Greenland Ice Sheet was observed by K. C. Partington in [19], impairing
the use of a manual partitioning approach, which would strongly depend on the subjective choice of
the decision thresholds. Moreover, the c-means fuzzy clustering algorithm has already been used in
the literature for discriminating snow facies using Envisat active and passive microwave observations,
showing it to be a promising approach for clustering similar regions of the Greenland Ice Sheet,
as presented by Tran et al. in [20].

2.1. The Fuzzy c-Means Clustering Optimization

Clustering defines the task of grouping together elements coming from an input set of
observations, depending on how similar they are to each other. The observations are divided
into c non-empty subsets called clusters. Since in reality clusters may show some kind of overlap,
fuzzy-clustering has been introduced [21]. The fuzzy c-means clustering algorithm is an iterative
optimization algorithm which allows the determination of the optimal cluster centers without requiring
a priori information [22]. In literature, the fuzzy c-means clustering has been found to be very popular



Remote Sens. 2017, 9, 315 4 of 24

within the research community, being used for a large variety of applications, such as risk and claim
classification or vehicular pollution estimation [23,24].

The idea is to represent the similarity that an observation shares with each cluster by using
a membership function, whose values are between 0 (0% probability of belonging to cluster i)
and 1 (100% probability of belonging to cluster i). The results are fuzzy c-partitions of the input
observation data set, which contain observations characterized by a high intracluster similarity and
a low extracluster one.

For a given input vector of N observations, defined as Y = [yk] (k = 1, · · · , N), where each yk
is characterized by P features, the membership function can be expressed using a c× N real matrix
U = [uik]. The ith cluster center is then identified by a P-dimensional tie-point vector vi.

If cluster centers are not known by a priori considerations, an optimization method has to be
applied in order to estimate them. Their locations are iteratively determined by optimizing the
following objective function:

J =
c

∑
i=1

N

∑
k=1

(uik)
m‖yk − vi‖2 (1)

where d2
ik = ‖yk − vi‖2 is the squared Euclidean distance from point yk to the cluster center vi.

The parameter m controls the fuzziness of the algorithm: m = 1 produces hard partitions of Y,
while increasing m allows the single clusters to overlap, blurring the membership degree to higher
levels of fuzziness. Since the Euclidean distances of the observations from the cluster centers in
Equation (1) have to be minimized, it is important to scale the different features to the same order of
magnitude, in order to avoid having a predominant one, which would affect the classification accuracy.
In this work, we decided to normalize each input set of features to a unit standard deviation as:

Ŷp = Yp/σp (2)

where Yp is a vector containing the N input values of Y for the pth feature and σp is the
standard deviation.

By substituting the normalized input data set Ŷ = [ŷk] into (1), the optimal clustering of Ŷ is
therefore obtained as:

(Û, v̂) = arg min
U,v

(
J
)

(3)

Û and v̂ can be optimized by iterating over the following equations:

v̂i =
∑N

k=1(ûik)
myk

∑N
k=1(ûik)m

, 1 ≤ i ≤ c (4)

ûik =

( c

∑
j=1

(
d̂ik

d̂jk

) 2
m−1
)−1

, 1 ≤ k ≤ N, 1 ≤ i ≤ c (5)

After a random initialization of Û, (4) and (5) are iteratively updated until convergence is obtained.
A convergence test can be performed by computing the mean square error between Û at steps α

and α + 1.
A recurrent issue of the c-means clustering algorithm is to remain stuck in a local minimum, being

unable to provide a meaningful set of cluster centers. A proper initialization of the cluster centers is
therefore highly recommended, as presented in the next section.

2.2. Algorithm Initialization

The algorithm initialization represents a crucial step in avoiding local minima. Many investigations
have been carried out on finding an effective initialization for the algorithm; in this paper we based
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our initialization on the work presented in [25]. The input set of normalized observations per feature
Ŷp is transformed into a positive vector Ỹp by:

Ỹp = Ŷp −min(Ŷp) (6)

Now the Euclidean distances of each scaled observation from the origin are evaluated and sorted
in increasing order. The corresponding scaled observations are sorted accordingly. Given the desired
number of output clusters c, the sorted observations are grouped together into c subsequent sub-sets,
each of those composed of N/c observations. For each sub-set, a cluster center is then initialized by
evaluating, for each feature, the mean value of all available observations.

3. Input Data: TanDEM-X Mosaics over Greenland

In this section, we present the input data set of TanDEM-X interferometric acquisitions used
for classifying Greenland Ice Sheet snow facies, together with the derivation of a mask of ice/no-ice
covered regions to which our analysis has been confined.

3.1. TanDEM-X Acquisitions over Greenland

The Greenland Ice Sheet has been almost completely covered with TanDEM-X for the first
time during winter 2010–2011, when the snow conditions are assumed to be stable, since melt
does not significantly occur. All these interferometric SAR acquisitions have been used for the
present investigation.

For processing reasons, TanDEM-X acquisitions are then split into ground scenes with an extension
of about 30 km in range and 50 km in azimuth.

For each scene, the operational TanDEM-X processor delivers several quicklook images as
by-products from the interferometric processing chain [26]. These quicklooks are characterized by
a lower resolution compared to the corresponding interferometric data at full resolution, having
a ground pixel spacing of about 50 m× 50 m, and are generated for several different quantities, such as
the amplitude, the interferometric coherence, and the resulting DEM.

3.2. TanDEM-X Input Mosaics

The new approach for classifying different snow facies of the Greenland Ice Sheet consists of
exploiting the information coming from both the radar backscatter and the volume decorrelation,
derived from the interferometric coherence. Large-scale mosaics of such quantities can be generated
by composing quicklook images together, with the constraint of selecting an output resolution equal or
larger than the one of each single input image [27,28]. For the current work the selected pixel spacing
is 0.002◦ × 0.006◦ in latitude/longitude coordinates, which, at a latitude of 73◦ N and longitude of
40◦ W, at the center of Greenland, corresponds to a ground resolution of about 200 m × 200 m.

A mosaic of γ0, the backscatter level projected in the plane perpendicular to the slant range
direction, is depicted in Figure 2a. This projection has been chosen because, with respect to the other
projections in the slant range plane (β0) or on ground (σ0), it is the one which, for an homogeneous
type of backscatter, shows a relatively constant reflectivity over a wide range of incidence angles [29].

The coherence contribution due to volume decorrelation can be estimated from the total
interferometric coherence as explained as follows. The total interferometric coherence can be
decomposed into different correlation factors [10]:

γTot = γSNR γQuant γAmb γRg γAz γVol γTemp (7)

where the different terms on the right-hand side of (7) identify the contributions due to limited
signal-to-noise ratio (SNR) (γSNR), quantization (γQuant), ambiguities (γAmb), baseline decorrelation
(γRg), relative shift of the Doppler spectra (γAz), volume decorrelation (γVol), and temporal
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decorrelation (γTemp). Since the total coherence decomposition proposed in (7) is a multiplicative
model, it has to be clarified that the higher each single correlation factor is, the higher the resulting
total coherence will be. The volume correlation factor γVol is inversely proportional to the amount of
volume decorrelation occurring in the data and represents the quantity that, from now on, we take
into account for quantifying the impact of volume decorrelation on the total coherence.

As explained in Section 1, the volume correlation factor γVol is a good indicator of snow
characteristics. This contribution must therefore be isolated from the total interferometric coherence,
which is available for each TanDEM-X interferometric acquisition. γVol can be derived from (7) as:

γVol =
γTot

γSNR γQuant γAmb γRg γAz γTemp
(8)

In the specific case of TanDEM-X:

• γSNR = 1/(1 + SNR−1), where SNR is the signal-to-noise ratio and is assumed to be equal in both
monostatic and bistatic images:

SNR =
β0 sin θ −NESZ

NESZ
(9)

being β0 the radar brightness, θ the local incidence angle, and NESZ the noise equivalent sigma
zero. For the different operational TanDEM-X beams, the NESZ profiles used are depicted in
Figure 3a, which have been evaluated as in [10].

• γQuant is computed by interpolating the look-up-table functions in Figure 3b, derived from real
TanDEM-X data [30]. Block adaptive quantization (BAQ) has been used [31].

• According to the performance estimation analysis for TanDEM-X [10], γAmb, γRg, and γAz are
assumed to introduce a further overall correlation factor of 0.98 (2%).

• γTemp ' 1, since images are acquired in bistatic configuration.

The resulting mosaic of γVol is shown in Figure 2b. It can be seen that, even though the illuminated
area on ground is homogeneous, a slight dependency of γVol on the slant range for each scene remains,
showing a higher γVol at the beam’s borders (near and far range). This is due to the fact the estimated
γSNR was computed by using theoretical NESZ profiles, due to a not perfect compensation of the range
antenna pattern.

Figure 2. (a) Mosaic of the backscatter γ0 over Greenland with a resolution of 200 m × 200 m.
(b) Corresponding mosaic of the volume correlation factor γVol. The composed TanDEM-X acquisitions
were acquired in winter 2010–2011. Areas where no data are available are depicted in black.
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Figure 3. (a) NESZ (Noise Equivalent Sigma Zero) profiles for the operational TanDEM-X beams [10].
(b) Coherence loss due to BAQ (Block Adaptive Quantization). Each curve identifies a different
quantization rate (2, 3, and 4 bits/sample).

3.3. Generation of the Ice Sheet Mask

The main part of the Greenland Ice Sheet is flat and is surrounded by mountainous regions
characterized by rough topography. Therefore, more gradual variations of both backscatter and
topography are expected over the Ice Sheet, with respect to the outer regions. In order to discriminate
the Ice Sheet from ice-free areas, a mask is generated by setting thresholds on the local variance of both
backscatter and local terrain slope.

The starting point to generate a map of local slope is the DEM quicklook image D(x, y), generated
for each TanDEM-X interferometric scene by the operational TanDEM-X processor. x and y are the
longitude and latitude dimensions, respectively, converted into spatial distances. A slope map can
be generated by evaluating the local DEM gradient ∇D(x, y), which can be decomposed into the
horizontal and vertical components as:

∇D(x, y) =
(

∂D(x, y)
∂x

,
∂D(x, y)

∂y

)
(10)

Then, the predominant local slope Λ(x, y) is retrieved by computing the Euclidean norm of the
gradient vector:

Λ(x, y) =

√(
∂D(x, y)

∂x

)2
+

(
∂D(x, y)

∂y

)2
(11)

For each γ0 pixel (in dB unit), its local variance σ2
γ0 has been evaluated as:

σ2
γ0 = E[(γ0)2]− (E[γ0])2 (12)

by computing the mean value E[·] on a window of 5× 5 pixels around the center one. The local
variance of the slope map σ2

Λ has been evaluated following the same approach. Two thresholds have
been empirically set at σ2

γ0 = 1 dB and σ2
Λ = 2%. The slope map of Greenland and the corresponding

permanent ice mask are depicted in Figure 4a,b, respectively. Note that the border samples of missing
acquisitions are filtered out as well, since the local variance between real data and missing ones within
the γ0 mosaic is obviously high (see Figure 2a).
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The obtained Ice Sheet mask has been verified by comparing it to the PROMICE (Programme
for Monitoring of the Greenland Ice Sheet) aerophotogrammetric map of Greenland ice masses over
different test sites [32]. An example is presented in Figure 5, where the two test sites identified by the
red rectangles in Figure 4b are considered. Good results are obtained over the Ice Sheet, while the
method frequently fails on outlet glaciers due to the presence of crevasses, small scale features,
and steep topography. Nevertheless, since we are focusing our attention on the whole Ice Sheet and
not on its borders, we assume the derived Ice Sheet mask to be accurate enough for our purposes.
The areas classified to be permanent ice- and snow-covered regions within the TanDEM-X mask are
finally taken into account as input observations for locating the different snow facies of the Greenland
Ice Sheet.

Figure 4. (a) Slope map over Greenland derived from TanDEM-X digital elevation data. (b) Mask of
permanent ice areas. White corresponds to the Ice Sheet and black to ice-free areas, derived from the
local variance of TanDEM-X backscatter and terrain slope. The red squares identify two test sites used
for verification, as presented in Figure 5.

Figure 5. Comparison between masks of permanent ice- and snow-covered regions of Greenland,
derived from TanDEM-X interferometric data, and the PROMICE aerophotogrammetric map of
Greenland ice masses [32].
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4. Classification Results

In this section we present the results obtained by applying the classification method, described
in Section 2, to the input data set of interferometric TanDEM-X acquisitions, presented in Section 3.
We selected P = 2 features, namely γ0 and γVol, and tested different numbers of clusters. We report here
the results obtained using c = 3, 4, 5 number of clusters. The m parameter was set to 2. The resulting
membership maps are displayed in Figure 6. A high percentage corresponds to a high probability
of belonging to a specific cluster. The classification results for the three different sets of clusters are
presented in Figure 7a–c. The corresponding normalized histograms of the input data, together with
the location of the cluster centers v̂, are depicted in Figure 7d–f, where the horizontal and vertical axis
display the normalized volume correlation factor γ̃Vol and the normalized backscatter γ̃0, evaluated as:

γ̃Vol =
γVol
σγVol

−min
(

γVol
σγVol

)
(13)

γ̃0 =
γ0

σγ0
−min

(
γ0

σγ0

)
(14)

being σγVol and σγ0 the standard deviations of γVol and γ0, respectively. For the considered input data
set, we have min(γVol) = 0.14, σγVol = 0.08, min(γ0) = −24.7 dB, and σγ0 = 3.94 dB. The cluster
centers for the selected partition in the normalized histogram of the input data are given in Figure 8.

Figure 6. Membership values for each pixel belonging to the Ice Sheet, for the different set of cluster
centers used for classifying the Greenland Ice Sheet. (a) three clusters, (b) four clusters, (c) five clusters.
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Figure 7. Classification of the Greenland Ice Sheet facies using (a) three, (b) four, and (c) five clusters;
together with the corresponding normalized histograms of the input data and the locations of the
cluster centers v̂ (d–f). The white rectangles locate the maximum of the histogram.

Figure 8. Location of cluster centers in the normalized input domain.

The fuzzy partition of three clusters shows a higher distance among the single cluster centers.
Higher numbers of clusters are also characterized by a higher degree of inter-cluster overlap and
result in a classification where lower values of the membership matrix Û are accepted for associating
a certain cluster to an input observation. Nevertheless, increasing the number of clusters allows to get
a more detailed characterization of the different snow facies, strongly influenced by increasing melt
phenomena from the center of the plateau toward the outer edges.

The algorithm was run using a higher a-priori number of clusters c as well, obtaining partitions
characterized by a very limited extend and increasing the confusion between adjacent classes.
Such a trend is already visible when using c = 5 (Figure 7c), where cluster 2 (light blue) corresponds to
a very thin intermediate layer between cluster 1 (blue) and cluster 3 (green) and is entirely characterized
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by the presence of pixels classified as both cluster 1 and 3. This trend is maintained for higher number
of cluster centers and the results are here omitted.

Furthermore, for the three different numbers of selected clusters presented in Figure 7,
the percentage of pixels classified accordingly to a membership value which is higher than 0.3, 0.5,
0.7 and 0.9 are summarized in Table 1. The results indicate that, using four clusters, over 81% of
the pixels are classified with a membership value above 0.5. From a pure algorithmic point of view,
such a partition shows therefore a reasonably good performance in terms of classification reliability.

Table 1. Percentage of pixels for each set of clusters classified according to a membership value ûik
higher than 0.9, 0.7, 0.5, and 0.3.

Clusters ûik > 0.9 (%) ûik > 0.7 (%) ûik > 0.5 (%) ûik > 0.3 (%)

3 23.8 64.2 91.3 100.0
4 12.7 46.8 81.2 98.9
5 8.9 35.4 69.0 96.8

Based on this finding, we decided to consider the partition with c = 4 for our further investigation,
which represents a good trade-off between a satisfying level of detail and a good separation between
adjacent clusters. From now on, we will therefore refer to snow facies instead of clusters and we will
consider the map presented in Figure 7b as reference, characterized by the presence of 4 different
snow facies.

Finally, by considering an overall Ice Sheet surface of 1,700,000 km2, it is possible to estimate the
extension of each snow facies. The results are presented in Table 2.

Table 2. Extension of the four Ice Sheet snow facies derived with TanDEM-X data, with respect to the
overall Ice Sheet surface of 1,700,000 km2, in % and in km2.

Facies Ice Sheet Percentage (%) Extension (km2)

Facies 1 24.1 409,700
Facies 2 27.8 472,600
Facies 3 21.9 372,300
Facies 4 26.2 445,400

5. Snow Facies Interpretation and Further Considerations

The interpretation of the derived snow facies map represents a challenging task, since no global
reference data, derived from interferometric SAR acquisitions, is available for a direct comparison.
To better understand the properties of each derived snow facies we used reference melt data, derived
from passive microwave sensors, and in situ measurements (Sections 5.1 and 5.2). This approach
allows us to characterize the derived snow facies by comparing them to physical parameters such as
average amount of snow melt per year, snow density, and structure. Further considerations on the
inner snow facies, characterizing statistical parameters, and volume decorrelation dependency on the
height of ambiguity are then addressed in Sections 5.3–5.5. A summary of the considerations expressed
in this section is finally given in Section 7.

5.1. Reference Snow Melt Data

As reference melt data we considered the map presented in Figure 9b, derived from spaceborne
passive microwave sensors as presented by M. Tedesco in [33]. It shows the average amount of
melt days per year during the time span between 1981 and 2010, at a resolution of 25 km × 25 km.
Such a long time span has been taken into account in order to be able to identify the dry snow
zone, where no significant melt has occurred for at least several years before the observations were
carried out.
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Figure 9. (a) Estimated snow facies of the Greenland Ice Sheet from TanDEM-X data with a ground
resolution of about 4 km× 4 km. The contour lines identify the borders between facies 1 and 2 (yellow),
facies 2 and 3 (light blue), and facies 3 and 4 (violet), respectively. (b) Average melt days per year from
1981 to 2010, derived from passive microwave sensors [33].

It is well know that a melt anomaly occurred in summer 2012, characterized by the presence of melt
events across almost the entire Ice Sheet. This caused melt/freeze metamorphism with a consequent
increase of backscatter levels also over the Greenland dry snow zone [34]. This fact resulted in reduced
penetration for CryoSat [35] and possibly also for TanDEM-X. It is therefore important to notice that
the data used for the current investigation were acquired before such events, after a quite stable period
of several years, documented by the collection of data provided by the C-band scatterometer ASCAT
from 2007 onwards [36].

To perform the comparison, we then derived the borders between different snow facies of
the TanDEM-X classification map. To do so, we first low-pass filtered the classification map in
Figure 7b using a two-dimensional Gaussian low-pass filter with passband bandwidth at −3 dB equal
to 5% of the total bandwidth, obtaining a map with resolution of about 4 km × 4 km on ground,
and then re-quantized it to the 4 available cluster values by applying nearest-neighbor interpolation.
The obtained results are shown in Figure 9a. At this point, we manually derived three polygons
by visual inspection, by selecting tie-points at the border between two adjacent classes (Figure 9a):
between the snow facies 1 and 2 (yellow), 2 and 3 (light blue), and 3 and 4 (violet), respectively.
The same polygons have also been superimposed onto the melt data in Figure 9b.

Facies 1 is mostly unaffected by snow melt. Facies 2 is confined between only a few days and
less than ten days of melt per year, while facies 3 is located where melt starts to be considerable
(between about ten and twenty days per year). Finally, facies 4 is mostly characterized by more than
20 days of melt per year. The first consideration that can be drawn from this analysis is that facies 1 is
principally characterized by the presence of permanently dry snow while the other snow facies belong
to a transition zone with increasing melt phenomena toward the outer regions of the Ice Sheet.

5.2. In Situ Measurements along the EGIG Line

Up to now, many scientific expeditions have been carried out in Greenland to empirically collect
data on the state of the Ice Sheet. In particular, several of those acquired data along sections of the
Expédition Glaciologique Internationale au Groenland (EGIG) line, a traverse route across the plateau
at about 70◦ N [37]. In the last years, selected test sites along the EGIG line were used for supporting the
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CryoSat Mission [38] with in situ measurements. Some of those are presented in Figure 10, where test
sites from T03 to T43 are superimposed on the derived snow facies map.

Figure 10. Test sites along the EGIG line used for supporting the CryoSat mission with in situ
measurements, superimposed onthe snow facies map as derived in Figure 7b. (Data overlayed in
c©Google Earth).

Scott et al. in [39] analyzed the spatial variation of snow density with depth from in situ
measurements at T03, T05, T07, and T12, performed in spring and autumn 2004 and spring 2006.
They report that:

• T03 (belonging to facies 4) shows the presence of percolation features, such as ice layers and
lenses, generated by meltwater and positioned under the summer melt level.

• at T05 (situated at the transition between facies 3 and facies 4), percolation features do not
always reach the melt surface of the previous summer. Moreover, because of percolation, an
additional moderate densification was observed beneath the previous upper end of summer
surface, suggesting that most of the percolating water refreezes before reaching the previous
summer surface.

• Between T07 and T12 (situated approximately at the outer and inner borders of facies 3) the depth
at which percolation features could be found significantly decreased.

Morris and Wingham reported snow density measurements from T05 to T41 in [40], obtained
using the neutron probe during field campaigns from 2004 to 2006. From their work, we can assess that:

• T05 is situated in the percolation zone and characterized by the considerable presence of thick ice
layers within the snow pack.

• A transition zone has then been detected between T05 and T21, which matches the borders of the
dry snow zone.

• T21 (belonging to facies 1) is indicated as the start of the dry snow zone. From our analysis,
the assigned snow facies 1 appears in that region to be slightly more extended toward the outer
Ice Sheet of about 30 km.

• Significant differences in the vertical structure are detectable between T12 and T21 (Figure 5
in [40]), being high-density melt layers clearly visible at T12 only.

• Mean snow density, accumulation rate, and mean snow temperature decrease almost gradually
along the EGIG line (from outer to inner regions).

These observations suggest that changes in mean snow density are not suitable for explaining
the significant differences in the observed signatures of backscatter and volume correlation factor
among the estimated facies, since variations of the mean snow density are small. More relevant are
the variations in the stratification and micro-structure of firn, such as the variations of density with
depth and the presence of percolation features. As presented by Scott et al. in [41], ice inclusions in the
percolation zone produce a complex radar return, characterized by the superposition of multiple strong
reflectors within a volume, impacting the characteristic interferometric signature of the acquired radar
signal. From the distributions of both backscatter and volume correlation factor from each estimated
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facies, it is seen how, within the transition zone, outer facies 3 and 4, where a significant presence
of percolation features is detected (e.g., at T03 and T05), are characterized by higher values of both
backscatter and volume correlation factor. Facies 2, on the contrary, is characterized by lower values of
both quantities, probably related to the decrease of percolation features within the snow pack.

5.3. Refined Classification of the Inner Snow Facies

Based on the considerations drawn in Section 5.1, we can assume the derived inner snow facies
(facies 1) to be dominated by the presence of dry snow. Even if melt does not occur within the whole
dry snow zone, this snow facies is characterized by the presence of different types of snow. This can
be explained by the lower snow accumulation rate and larger grain size in the north-east part of
Greenland [3,42]. Such differences cannot be so clearly detected by γVol, but are well visible if γ0 is
considered. This becomes clear when looking at the mosaic of the SNR in Figure 11a, which is lower
in the inner southern part of snow facies 1, resulting into a decrease of γSNR. Such loss in the total
coherence is therefore compensated with the evaluation of γVol. A refinement of the classification
of facies 1 can be done by performing a sub-clustering, taking into account as input data pixels
classified as dry snow zone. In this way, the algorithm is able to detect smaller differences than
when applied to the whole Ice Sheet. The results using two sub-clusters are presented in Figure 11b,
together with the membership matrix in Figure 11c, and the normalized histogram of the input data in
Figure 11d. The following values were obtained from the input data for the computation of γ̃Vol and
γ̃0: min(γVol) = 0.14, σγVol = 0.04, min(γ0) = −24.7 dB, and σγ0 = 2.09 dB. The two classes can be
associated to a southern (light blue) and a northern (violet) sub-facies, characterized by higher and
lower snow accumulation rates, respectively.

Figure 11. (a) Mosaic of the SNR for the considered TanDEM-X acquisitions. (b) Refined classification
of facies 1 into a northern (violet) and a southern (light blue) sub-facies. (c) Membership values for
each pixel for the two sub-clusters. (d) Histogram of the input data in the normalized domain.
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5.4. Statistical Analysis of the Derived Snow Facies

We can now analyze the statistical properties of the derived snow facies in terms of backscatter γ0

and volume correlation factor γVol. To do so, we evaluated the histograms of these quantities for each
snow facies separately, as presented in Figure 12 (filled red area). The histograms of backscatter γ0

have been directly derived from γ0 in dB. As it can be seen, each distribution can be clearly fitted by
using a Gaussian function, except for γ0 of facies 1, where two peaks are visible and a better fitting can
be performed by summing two Gaussian distributions (Figure 12(a1)), as confirmed by the refined
classification explained in Section 5.3. The variation of γVol from the southern to the northern facies 1
is much less accentuated and a single Gaussian fitting has been used for the whole facies. Mean values
and standard deviations, evaluated in linear scale, of γ0 and γVol for the different snow facies are
presented in Table 3.

Figure 12. Histograms of the backscatter γ0 and of the volume correlation factor γVol (filled red area),
and corresponding Gaussian fitting (solid curves) for facies 1 (a1,a2), facies 2 (b1,b2), facies 3 (c1,c2),
and facies 4 (d1,d2). The sum of two Gaussian curves in plot (a1) has been used for fitting the γ0 of
inner snow facies (facies 1). (e1) Overall normalized histogram of the total backscatter γ0 (red bars)
and sum of the five fitting Gaussian distributions (black) derived for the different facies. (e2) overall
normalized histogram of the total volume correlation factor (red bars) and sum of the four fitting
Gaussians (black) derived for the different facies.
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We can now use the fitted Gaussian distributions to characterize the overall distribution of γ0 in
dB and γVol over the Greenland Ice Sheet as:

G(x) =
N f

∑
i=1

1√
2πν2

1,i

exp
(
− (x− ν2,i)

2

2ν2
3,i

)
(15)

where N f identifies the number of facies and x is either γ0 (N f = 5) or γVol (N f = 4). The estimated
set of fitting coefficients ν is given in Table 4. The overall normalized histograms of both γ0 and γVol,
together with the corresponding modeled Gaussian distributions, are shown in Figure 12(e1,e2).

Table 3. Mean values and standard deviations of γ0 and γVol for the different snow facies. γ0 values
are displayed in both linear and logarithmic scale.

Facies

Backscatter γ0 Volume Correlation Factor γVol

Mean Std. Dev. Mean Std. Dev.

( ) (dB) ( ) (dB) ( ) ( )

1 (southern) 0.095 −10.21 0.033 −14.76 0.67 0.041 (northern) 0.172 −7.63 0.067 −11.73
2 0.253 −5.96 0.101 −9.95 0.73 0.05
3 0.664 −1.78 0.247 −6.07 0.77 0.03
4 0.883 −0.54 0.365 −4.37 0.85 0.04

Table 4. Gaussian fitting coefficients for modeling the distributions of γ0 and γVol as in Equation (15).

Facies Backscatter γ0 Volume Correlation Factor γVol

ν1,i ν2,i ν3,i ν1,i ν2,i ν3,i

1 (southern) 0.127 −11.056 1.316 0.247 0.670 0.0411 (northern) 0.129 −7.620 1.373
2 0.274 −5.888 1.561 0.274 0.717 0.037
3 0.235 −2.087 1.761 0.223 0.769 0.029
4 0.235 −0.148 1.256 0.254 0.839 0.029

5.5. Volume Decorrelation Dependency on the Height of Ambiguity

In presence of volume scattering, the volume correlation factor γVol is influenced by the acquisition
geometry. The phenomena can be analyzed in terms of dependency of γVol on the height of ambiguity
hamb, which corresponds to the height difference equivalent to a complete 2π phase cycle in the
interferogram and, for a bistatic acquisition, is defined as [10]:

hamb =
λr sin θ

B⊥
(16)

where λ is the radar wavelength, r the slant range, θ the incidence angle, and B⊥ the normal baseline.
Several investigations on this topic have been already performed within the TanDEM-X mission over
forested areas, showing a significant increase of γVol with hamb [13].

Since such a dependency changes with the characteristics of the snow pack and the scattering
mechanisms involved, it has not been possible to introduce a correction factor on γVol before applying
the c-means fuzzy clustering algorithm to mitigate such effects, being that the location of the different
snow facies is unknown. Hence, a statistical analysis has been carried out afterwards for each estimated
snow facies separately, aim to better investigate such a dependency. We grouped together the different
hamb per input acquisition in intervals of 0.5 m each, evaluating the corresponding distribution of γVol.
For each snow facies, we noticed that no significant trend is detectable, probably due to the fact that
we are observing a limited span of heights of ambiguity. The clearest trend was observed over facies
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3 and is presented in Figure 13. The plot shows the mean values and standard deviations of γVol for
the different height of ambiguity intervals (vertical axis on the left-hand side), while the number of
input measurements in logarithmic scale for each interval of the height of ambiguity is depicted in
blue (vertical axis on the right-hand side). Results obtained for hamb > 53 m and hamb < 40 m are to be
considered unreliable, since only a few input measurements were available. An overall slight increase
of γVol of about 0.05 is visible.

Therefore, not introducing a hamb-dependent correction factor on γVol does not significantly
polarize the estimation of the facies location. Nevertheless, this aspect could be taken into account
for a future refinement of the proposed method, by iterating the classification algorithm twice and
introducing a different hamb-dependent correction factor for each of the estimated snow facies location
at the first step.

Figure 13. Dependency of the volume correlation factor γVol on the height of ambiguity hamb for the
snow facies 3. Red dots: γVol mean values, vertical black lines: γVol standard deviations (axis on the
left-hand side), blue dots: number of available γVol samples N per hamb interval in logarithmic scale
(axis on the right-hand side).

6. Estimation of the Penetration Depth

Knowing the properties and the location of the different facies of the Greenland Ice Sheet
represents the bases for further scientific investigations. In this section, we derive a map of the
penetration depth, based on the model presented by Weber Hoen and Zebker in [9] and we compare it
to real elevation measurements from TanDEM-X data. By assuming a homogeneous, lossy scattering
medium, they modeled the volume correlation factor γVol with respect to the one-way power
penetration depth d1w as:

γVol =
1√

1 +
(

2π
√

εd1wB⊥
rλ tan θ

)2
(17)

where ε is the dielectric constant and, for an icy medium, it is supposed to be real and to remain
constant throughout it. d1w represents the penetration depth where the one-way power decreases by
1/e. By inverting (17), we obtain d1w as:

d1w =
rλ tan θ

2π
√

εB⊥

√
1

γ2
Vol
− 1 (18)

The two-way penetration depth d2w can then be derived as:

d2w =
d1w
2

(19)

We consider the two-way penetration depth because it is the one that approximates the location
of the radar mean phase center and is therefore related to the measured interferometric height.



Remote Sens. 2017, 9, 315 18 of 24

By exploiting the snow facies map in Figure 9a, we can now associate to facies with a proper
value of ε. The dielectric constant ε can be related to the snow density ρ as presented in [43]; taking
the single measurements which relate the density to the permittivity in H polarization, we performed
a 2nd-order polynomial fitting, shown in Figure 14. Assuming a homogenous density of snow within
the most superficial layers of the snow pack (until about 10 m depth), the mean snow density ρ̄ along
the EGIG line, accumulated over the period of spring 2004 to summer 2006, can be extrapolated from
Equation (20) in [40] and associated to the different test sites, depending on the distance from T05
(as in Table 1 of [40]), leading to the following values:

• at T05 (belonging to facies 4): ρ̄ = 0.41 g/cm3,
• at T09 (belonging to facies 3): ρ̄ = 0.40 g/cm3,
• at T12 and T15 (belonging to facies 2): ρ̄ = 0.40 g/cm3 and ρ̄ = 0.39 g/cm3,
• from T21 to the summit of the traverse (belonging to facies 1): ρ̄ decreases from about 0.38 g/cm3

to about 0.33 g/cm3.

Figure 14. Relation between snow density and permittivity, derived from [43].

When more than a single ρ̄ value per facies are available, the mean value has been considered.
These values are summarized in Table 5, together with the corresponding permittivities. By substituting
the derived ε into Equations (18) and (19), together with the other parameters derived for the
considered TanDEM-X acquisitions, we obtain the map of the two-way penetration depth in Figure 15a.
The corresponding histograms for each facies are depicted in Figure 16a and the mean value E[d2w]

and standard deviation σd2w for each distribution are summarized in Table 6.
The obtained results over facies 1 (characterized by dry snow) match very well with the ones

obtained by Rott et al. in [14], where a one-way penetration depth of 8.1 m at 10 GHz was estimated
for dry, highly metamorphic snow, corresponding to a two-way penetration depth of 4.05 m.

Table 5. Mean snow density ρ̄ and permittivity ε for the different snow facies of the Greenland Ice
Sheet [40,43].

Facies Mean Snow Density ρ̄ (g/cm3) Permittivity ε

1 0.355 1.70
2 0.395 1.75
3 0.40 1.78
4 0.41 1.80
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Figure 15. (a) Map of the retrieved X-band two-way penetration depth. (b) Mean differences between
TanDEM-X DEM, acquired during winter, and ICESat measurements.

Figure 16. (a) Histograms of the two-way penetration depth for the different snow facies.
(b) Histograms of the mean difference between ICESat and TanDEM-X DEM ∆h for the different
facies. The mean value of each distribution is indicated by a vertical line in the corresponding color.
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Table 6. Mean values and standard deviations of the two-way penetration depth and of the difference
between ICESat measurements and TanDEM-X (TDX) DEMs for the different snow facies. ∆H is the
difference between the mean d2w and the mean ∆h.

Facies Penetration Depth d2w ICESat-TDX DEM ∆h ∆H
Mean (m) Std. Dev. (m) Mean (m) Std. Dev. (m) (m)

1 4.18 0.51 5.38 1.90 −1.20
2 3.58 0.56 4.70 1.49 −1.12
3 3.07 0.33 3.89 1.54 −0.82
4 2.34 0.49 3.74 2.32 −1.40

We also compared the obtained results to the difference between ICESat laser elevation
measurements, carried out between 2003 and 2009 [44], and the final global TanDEM-X DEM.
As already mentioned, radar DEMs typically represent the location of the mean phase center of
the backscattered signal; in case of penetration into the snow pack, they will differ from ICESat, which
measures the height of the surface. For each available ICESat value, we evaluated the mean difference
∆h between ICESat and TanDEM-X DEM as:

∆h = E[hICESat − hTDX ] (20)

where hTDX identifies the mean height of the final TanDEM-X DEM within the considered ICESat
footprint and hICESat represents the measured height from ICESat over the same ground area.
The results are shown in Figure 15b.

∆h has been separately evaluated for the four different snow facies in Figure 9a by applying
a defined polygon for each zone, derived as presented in Figure 9. The corresponding histograms
for the different facies are depicted in Figure 16b and the mean values and standard deviations are
again summarized in Table 6. It has to be mentioned that ICESat measurements are older than the
considered TanDEM-X DEMs. In the time intermediate there have been changes in the height of the
Ice Sheet that introduce a further amount of uncertainty in the estimation.

The depth of the mean phase center of a radar wave, measured by the interferometric phase,
approximately equals the two-way penetration depth d2w if the latter is lower than about 10% of the
height of ambiguity hamb, otherwise a bias between the two is introduced [45]. For the current analysis,
the worst-case can be estimated using the ratio between the 3σ two-way penetration depth over the
dry snow zone, given by E[d2w] + 3σd2w ' 5.5 m, and a minimum hamb of about 40 m (Figure 13).
The result is a ratio of about 14%, which allows us to reasonably assume that no significant bias is
introduced between the two-way penetration depth d2w and the elevation measurement ∆h.

We can now evaluate the difference ∆H between the mean d2w and the mean ∆h for each snow
facies as:

∆H = E[d2w]− E[∆h] (21)

Assuming a good accuracy of the two-way penetration depth d2w, at least confirmed for the inner
snow facies (characterized by the presence of dry snow) by the results obtained by Rott et al. in [14],
∆H is expected to be around zero. Even though the results match quite well, the obtained values,
shown in Table 6, indicate the presence of a slightly negative offset which varies from about −0.8 m to
−1.4 m.

A reason to at least partly explain such differences is the simplified (single layer) model of
Hoen and Zebker for relating volume decorrelation to penetration depth. The model assumes that
there is no depth dependency of the scattering cross-section, a constant density, and uncorrelated
scatterers. This hypothesis is not true for a highly stratified medium such as polar firn, as addressed in
Section 5.2 [39,40]. For example, since the penetration depth at X-band is on the order of a few meters,
the density of the upper layers of the snow pack becomes of predominant importance. In particular,
the first two meters typically present lower density than the mean values used here (see e.g., Figures 2
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and 5 in [40]). If we now assume a decrease of 20% in snow density, which is comparable to the density
change in the upper layers in [39,40] with respect to the mean one, this would result in an increase of
the mean two-way penetration depth in the range from 7 cm (facies 1) up to 17 cm (facies 4), reducing
the remaining offsets by the same amount.

Other sources of uncertainty may result from the fact that the TanDEM-X DEM has been calibrated
using ICESat measurements in the outer regions of Greenland only. Along the Ice Sheet a self-adjusting
block calibration has been implemented [46], which might also explain the persistence of a residual
offset. A further reason might be the occurrence of height changes during the time span which
separates ICESat measurements from TanDEM-X acquisitions.

A way to improve the accuracy of the penetration depth model could be to combine both
backscatter and volume decorrelation information, which would be consistent with the applied
snow facies classification method, which considers both quantities. This topic will be the object of
further investigations.

7. Summary and Conclusions

In this paper we present an approach for locating different snow facies of the Greenland Ice
Sheet by exploiting X-band TanDEM-X interferometric SAR acquisitions. We applied an unsupervised
classification method based on the c-means fuzzy clustering algorithm, which uses features inherent
in the data without subjective interference. This is an appropriate method for exploring the
information content of the 2D feature space, given by the combination of radar backscatter γ0 and
volume correlation factor γVol, with respect to glacier facies, which is a main objective of the work.
The algorithm has been applied to TanDEM-X data acquired during winter 2010/2011, by analyzing
three different partitions, obtained by selecting a different number of clusters (c = 3, 4, 5), in order to
assess the feasibility for discriminating facies types. The partition composed of 4 clusters is a good
compromise in terms of classification reliability and high level of detail and has therefore been chosen
as reference for the current work. We then provided a statistical analysis of both γ0 and γVol over the
Ice Sheet for each different facies and investigated the dependency of γVol on the acquisition geometry
and, in particular, on the height of ambiguity ranging from 40 m to 53 m. The use of a correction factor
for γVol depending on the height of ambiguity might represent a starting point for a future refinement
of the classification algorithm.

The derived snow facies have been interpreted by means of reference melt data and in situ
measurements along the EGIG line.

Facies 1 is dominated by the presence of dry snow. Further refined clustering reveals two
sub-facies (a southern and a northern one) which can be related to different snow accumulation rates.
Facies 2 to 4 belong to a transition zone where melt phenomena increase toward the outer regions of
the Ice Sheet. Facies 2 and 3 approximately correspond to the percolation zone, and facies 4 to the
wet snow zone, reported by Benson in [2]. This is confirmed by structural properties of the snow
volume as observed by Morris and Wingham in [40]. The subdivision into different facies results from
differences in γ0 and γVol due to spatial changes in microstructure of firn related to melt intensity and
accumulation rates, which vary with elevation, snowfall pattern, and wind drift. The subdivision is
therefore a pointer to such differences.

Given the high similarity in terms of backscattering properties and volume decorrelation among
pixels belonging to the same cluster, we can then apply the mean value of snow density to the
entire considered snow facies. This allowed us to estimate the penetration depth by inverting the
interferometric model proposed by Weber Hoen and Zebker in [9] and assuming the dielectric constant
for an icy medium to be real and to remain constant for a given facies type. The obtained results
show a mean two-way penetration depth of 4.18 m for facies 1, 3.58 m for facies 2, 3.07 m for facies
3, and 2.34 m for facies 4. These values have been compared to the elevation between the global
TanDEM-X DEM and ICESat measurements, proving that, theoretically, no considerable bias between
the two measurement approaches is to be expected. A residual negative offset has nevertheless been
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detected, which varies from about −0.8 m to −1.40 m for the different snow facies, which will be
object of further investigations. A possible explanation might be the fact that the Weber Hoen and
Zebker’s model relies on simplifying assumptions, such as no depth dependency of the scattering
cross-section, a constant density, and uncorrelated scatterers. Other sources of uncertainty may be
related to the TanDEM-X DEM calibration or to the occurrence of height changes during the time span
which separates ICESat measurements from TanDEM-X acquisitions.

Even though featuring a limited penetration into the snow pack, TanDEM-X interferometric
data demonstrates itself to be highly sensitive to changes in snow properties and represents a highly
valuable data set for investigating Greenland Ice Sheet characteristics and its evolution. The continuous
monitoring of the cryosphere in an era of climate changes represents one of the most challenging
tasks for the remote sensing community. The developed approach can also be applied to more recent
TanDEM-X acquisitions over Greenland and Antarctica Ice Sheets, to characterize their properties
and changes. The work performed here represents therefore a starting point for further analyzing
the evolution in time of Ice Sheets, by monitoring the changes in the location of the different snow
facies, as an indicator of climate changes. Moreover, the technique could be exploited within future
interferometric SAR missions as well. For example, the Tandem-L mission is being currently designed
for acting as single-pass interferometer at L-band [47], with the main object of assessing the dynamic
processes in the Earth’s environmental system.
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