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Stream Flow

● Changes in timing & magnitude of 
freshwater discharge into the Arctic 
Ocean

● Majority of freshwater entering the 
Arctic Ocean originates in the 
boreal forest

● Changes in the hydrologic regime 
due to changing climate/permafrost 
regime have been documented 
(break-up/freeze-up, increased 
baseflow, etc)



  

Research Challenge
● Major challenge to the research 

community is “to establish the link 
between permafrost changes of the 
boreal forest in response to a warming 
climate and changing discharge of 
freshwater into the Arctic Ocean” 
(McGuire and Chapin, 2006)
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CPCRW Location



  

Permafrost & Stream Flow

Permafrost dominated watersheds display higher specific discharge, lower 
specific base flow, and longer recessions compared to watersheds of lesser 
permafrost extent.



  

Permafrost & Stream Flow

In the sub-watersheds with high permafrost extent, the storage capacity 
of the soils increase as the active layer thaws.  As a result, the subsurface 
contribution to storm events increases throughout the summer.



  

Permafrost & Soil Moisture

Large differences in soil moisture content in areas underlain with 
permafrost and areas free of permafrost.



  

Physical Controls on Permafrost & 
Active Layer

Permafrost Distribution:
● Slope, Aspect, Elevation
● Soil material
● Soil moisture content
● Vegetation
● Disturbance

Active Layer Position:
● Duration of snow cover
● Soil material
● Thermal conductivity of soil
● Soil moisture content
● Ice content
● Convection of heat by ground water

Many of these controls are not easily 
measured/predicted spatially and over time!



  

Simulation Challenge
● Dynamic hydraulic conditions in both temporal and 

spatial (x-, y-, and z-) dimensions.

● Many of the controls on this process are not easily 
measured beyond the plot scale.

● Rainfall-Runoff Model based upon Kirchner (2009)

● Storage-discharge relationship based solely upon 
discharge measurements.

Kirchner, J.W. (2009), Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff 
modeling, and doing hydrology backward, Water Resources Research., 45, W02429, doi:10.1029/2008WR006912.

Approach to Challenge

dQ
dt

=
dQ
dS
dS
dt

=g [Q ]P−ET−Q 



  

Q-Storage Function
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High Permafrost Watershed 1999 - 2001
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Simulation Results – High Permafrost



  

Q-Storage Function Revisited



  

Q-Storage Function Revisited



  

Simulation Revisited



  

Simulation Results – Continuous 
Permafrost

http://www.uaf.edu/water/projects/NorthSlope/currentconditions.html

http://water.engr.psu.edu/gooseff/arctic_proj.html



  

Q-Storage Function – Upper Kuparuk

1996, 1999, 2002, 
20051996, 1999, 2002, 2005



  

UK – Calibration 1999



  

UK Calibration - 2002



  

UK Calibration – 2005



  

Calibrated Curves – a, b

g [Q ]=aQb−1



  

UK - Predictive



  

SnowModel:
A Spatially Distributed Snow-
Evolution Modeling System 

(Liston and Elder 2006b).

● MicroMet – Micro-Meteorological Distribution 
Model (Liston and Elder 2006a)

● EnBal – Surface Energy Balance/Melt Model 
(Liston et al. 1999)

● SnowPack – 1-D, Snowpack Model (Liston and 
Hall 1995)

● SnowTran-3D – Blowing and Drifting Snow 
Model (Liston and Sturm 1998; Liston et al. 2007)

● SnowAssim – Snow Data Assimilation Model 
(Liston and Hiemstra 2008)



  

UK – Predictive with Snow
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NLHM Summary

● NLHM appears to be viable alternative for runoff-simulations.

● Storage component is explicitly taken into account.

● Snowmelt, glaciers, aufeis, lakes/ponds need to be addressed.

● NLHM is simple. Potential to expand depending upon data 
availability. (Snowmelt, ET, distributed P, etc.)

● NLHM is computationally fast.  < 0.5 seconds for 5 summer 
simulation periods on a single processor.
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