I'Unité de mesure et d'expertise

STATISTICAL ESTIMATION AND RE-ANALYSIS OF PRECIPITATIONS OVER FRENCH MOUNTAIN RANGES

• USING WEATHER PATTERNS, WATER BALANCES • AND SNOW MEASUREMENTS ASSIMILATION

> Frederic GOTTARDI – EDF frederic.gottardi@edf.fr

Introduction

Why a french hydropower company is interested in *precipitation estimation*?

2 forecast contexts :

water resources management (several days to several months ahead)

flood events (several hours to several days ahead)

Introduction

Is precipitation estimation easy in mountain ranges ?

Certainly not, essentially because of :

High spatial and temporal variability of precipitation Scarcity of observations (poor network and no remote sensing)

Example

What is the annual mean of precipitation on the small catchment of Gloriettes ?

Question

How can we estimate rainfall fields in mountains with point observations often placed in valley ?

spatial interpolation + elevation extrapolation

PhD research (Gottardi et al., 2009)

Outline

① EDF statistical method for precipitation estimation in mountains

② First validations

③ Assimilation of snow observations

④ Second (more) validations

DTG I'Unité de mesure et d'expertise

EDF STATISTICAL METHOD FOR PRECIPITATION ESTIMATION IN MOUNTAINS

Raingauges network

PG2000 raingauge

Mougin totaliser

Which period ?

Weather patterns : Pressure and rainfalls (1)

WP 1 : Atlantic Wave (7%)

WP 3 : Southwest

Circulation (8%)

WP 2 : Steady Oceanic (24%)

WP 4 : South Circulation (18%)

10

Weather patterns : Pressure and rainfalls (2)

WP 5 : Northeast Circulation (7%)

WP 6 : East Return (6%)

WP 8 : Anticyclonic (27%)

Mountain weather & Climate, Roger G. Barry (2001)

Local linear regression

Precipitations of Nov.26,1983 on The Alps

Other works

USA

Precipitation-elevation Regressions on Independent Slopes Model (Daly et al., 1994)

Switzerland (Frei and Schär, 1997)

WP2 average rainfield (Steady Oceanic)

WP3 average rainfield (Southwest Circulation)

WP5 average rainfield (Northeast Circulation)

WP6 average rainfield (East Return)

WP4 average rainfield (South Circulation)

WP7 average rainfield (Central Depression)

WP8 average rainfield (Anticyclonic)

8 Precipitation guess fields

Daily estimation using WP guess fields

First estimation of daily precipitation

DTG l'Unité de mesure et d'expertise

FIRST VALIDATIONS

Temperature Model

⇒ Rain/Snow discrimination
⇒ Snowmelt estimation
⇒ PET estimation

Cartography of the daily Tmin and Tmax for the 1953-2005 period

EDF Snow network

EDF snow network

~ 650 stations :

- ~ 325 core samplings
- 48 gamma-rays attenuation SWE gauges
- 36 cosmic ray attenuation SWE gauges

Monthly **1948-2008** Daily **1983-2003** Daily **1999-2008**

Snow Model : a degree-day model

SWE gauge of Chardonnet, winter 1992

Snow Model

SWE gauge of Chardonnet, winter 1992

Snow validation

Precipitation increase to unbias snow simulation

Gauged catchments for water balance

Annual Water balances Validation

Annual deficit D (Annual Precipitation – Annual Runoff) Real Evapotranspiration RET (Turc, 1953 ; Menzel and Lang, 1998 ; Mouelhi, 2003)

Hypothesis : $D \approx RET$

Annual Mean deficit for the 1985-2005 period

DTG l'Unité de mesure et d'expertise

234567

ASSIMILATION OF SWE MEASUREMENTS

1

Correction of rain gauges measurements as a function of the solid fraction (snow)

Replay all the process...

New weather pattern guess fields with :

- -SWE measurements,
- -Corrected raingauges and totalisers measurements,

New daily estimations

New validations

SWE Model

153 series are modeled (core sampling, continuous SWE meas.)

To reproduce observations :

Before Mean multiplicative factor = 1.41 Std Dev. = 0.36

After Mean multiplicative factor = 0.96 Std Dev. = 0.18

New annual water balances

Annual Mean of precipitation (1971-2001)

DTG l'Unité de mesure et d'expertise

CONCLUSION AND OUTLOOK

Conclusion

Daily precipitation re-analysis

- 1km x 1km grid
- 1953-2005 period
- French mountain ranges

- Raingauges measurements,
- SWE measurements,
- Runoff measurements.

Synthesis of all the ground information available in mountains.

SWE maps (Post-Doc work, distributed snow model)

Better understanding of the snow hydrology

Improvement of the operational seasonal forecast

Thank you for your attention