Synergistic Use of Satellite Radar Observations and Meteorological Data for Modelling Glacier Mass Balance and Runoff

Cold Regions Hydrology Workshop, Innsbruck 28-30 April 2010

Thomas Nagler Helmut Rott Markus Heidinger Florian Müller ENVEO, Austria ENVEO & IMGI, Austria ENVEO, Austria ENVEO, Austria

- Glacier Mass Balance Model
- Processing Line
- Pre-processing of Meteorological Data
- Remote Sensing Snow / Ice Snow products
- Examples of Glacier MB modelling
- Concept for Use of CoReH2O Data
- Conclusions

Temporal Evolution of Glacier Mass Balance

enveo

Glacier Net Balance, b_n :

Total Glacier Net Balance, B_n

$$b_n = \int_{t_1}^{t_2} \left(\frac{\partial c}{\partial t} + \frac{\partial a}{\partial t} \right) dt$$
$$B_n = \int_{S_c} b_n dS + \int_{S_a} b_n dS$$

 $S_c \dots$ accumulation area $S_a \dots$ ablation area

after Paterson, 1994

Concept of Glacier Mass Balance Model - GMB

$$B_{n}(t) = C_{sn,i}DDF_{sn,i}(t)T_{i}^{+}(t)A_{sn,i}(t) + C_{ice,i}DDF_{ice,i}(t)T_{i}^{+}(t)A_{ice,i}(t) + f_{p}(T)C_{p,i}P_{i}(t)$$

C _{sn,i} , C _{ice,i} , C _{p,i} DDF _{sn,i} , DDF _{ice,i}	Correction factor for losses for snow melt, ice melt, rain at elevation zone i Degree day factor for snow and ice at elevation zone i
$A_{sn,i}, A_{ice,i}$	Area of snow and ice at elevation zone i
T_{i}^{+}	Daily sum of positive degree days
f_{p}	Fraction of solid and liquid precipitation
Ρ _i	Precipitation at elevation zone

Processing Steps

Application Example: Ötztal Glaciers

- HEF Hintereisferner, 7.7 km²
- GF Gepatschferner, 16.6 km²
- KF Kesselwandferner, 3.8 km²
- VF Vernagtferner, 8.3 km²

envec

Meteorological Data and SAR Images

Date	Mode	Track	Polarization	Used as
2007/10/30	Stripmap	078	HH	Reference
2008/07/20	Stripmap	078	VV	Snow Map
2008/08/11	Stripmap	078	НН	Snow Map
2008/08/22	Stripmap	078	HH	Snow Map
2008/09/13	Stripmap	078	VV	Snow Map

Cold Regions Hydrology WS, 28-30 April 2010

Thomas Nagler

Pre-processing of Meteorological Data for Model Input

Daily mean Temperature Daily Precipitation

Temporal integration

Spatial interpolation (takes elevation dependence into account)

Cold Regions Hydrology WS, 28-30 April 2010

Thomas Nagler

Snow / Ice Area Mapping on Glaciers from SAR Data

Thomas Nagler

TerraSAR-X Maps of Wet Snow Extent

Stripmap Mode VV Pol. $\theta = 31 \text{ deg.}$

Red - Snow Yellow - Layover / foreshortening

Cold Regions Hydrology WS, 28-30 Apri

Comparison of TSX-1 Snow Map with Oblique Photo

13 September 2008

9 September 2008

red - Snow yellow - layover

oblique photo taken from aircraft

Computed Mass Balance – Hintereisferner 2008

Computed Mass Balance – Hintereisferner 2009

Computed Mass Balance - Gepatschferner

2007/2008

Calculations of Glacier Runoff Contributions

Hintereisferner 2007/2008

Model Application to Storglombreen Glacier, Norway

Computed Mass Balance Storglombreen 2002

matching of modelled and satellite–observed time evolution of snow/ice area extent

Use of CoReH2O retrieved Snow Accumulation

Cold Regions Hydrology WS, 28-30 April 2010

Thomas Nagler

Summary and Conclusions

- A semi-distributed model has been developed for computing glacier mass balance from meteorological data and time series of spatially detailed snow / ice maps derived from satellite data. The model was applied and validated for glaciers in the Alps and in Norway.
- The estimation of the winter snow accumulation was identified as the main uncertainty for computing annual mass balance.
- The accumulation estimate can be improved iteratively by using time series of snow/ice area extent from satellite data. Close time series of satellite images throughout the ablation period are needed.
- Spatially detailed data on snow accumulation would significantly improve glacier mass balance modelling in remote regions. Such measurements are addressed by CoReH20.