

CoReH2O MAGS Meeting No. 11 Innsbruck, Austria 27 April 2010

Can-CSI - Campaign Update

Claude Duguay¹, Chris Derksen², Richard Kelly¹, Josh King¹, Alex Langlois³, Nick Rutter⁴, and Peter Toose²

¹IC³, University of Waterloo, Canada

²Climate Research Division, Environment Canada

³CARTEL, Université de Sherbrooke, Canada

⁴School of Applied Sciences, Northumbria University, U.K.

with support from CFI, CSA, EC, and NSERC and the participation of many graduate students/staff/colleagues

CANADIAN PHASE-A FIELD ACTIVITIES

The Canadian CoReH2O Snow and Ice Experiment 2009-2010

Experiment duration:

• November 2009 – April 2010

Experiment location

• Churchill, Manitoba

Remote sensing equipment deployment

- X- and Ku-band scatterometers (University of Waterloo): near continuous measurements during intensive and extensive observing periods;
- passive microwave radiometers (EC): discrete samples during intensive observing periods
 Field *in situ* measurements (UW, EC, CARTEL, NU)

CAN-CSI Experiment 2009-2010

Intensive Observing Periods (IOPs) Extended Observing Periods (EOPs)

CAN-CSI Experiment 2009-2010

Platform site

Wet & Dry Fen site

Lake58 site

Forest site

CAN-CSI :: Weather

Meteorological measurements at 3 sites (C)

CAN-CSI :: Weather

Meteorological measurements: temperature

CAN-CSI :: Snow Accumulation

- Similar snowfall input across the study area
- Vastly different snow accumulation, redistribution, and metamorphosis due to wind distribution and interactions with vegetation.

CAN-CSI :: Microphysical snow pit

High resolution snow pit characterization to explain backscatter responses

- Optical measurements
 - for snow grain size (SSA) measurements
 - Integrating sphere (laser)
 - Near IR photographs
 - Grain shape and type analysis
- Density profile
- Temperature profile
- Water liquid content profile
- Layering

CAN-CSI :: Microphysical snow pit

SSA measurements (IRIS): CARTEL (U. Sherbrooke) instrument

Measurements of hemispheric reflectance at 1300 nm using a mobile integrating sphere

Comparison with the theoretical reflectance model of Kokhanovsky and Zege, 2004. Scattering optics of snow. Applied Optics, 43: 1589-1602 (KZ04)

Royer et al., to be submited

CAN-CSI :: Microphysical snow pit

Lake 58

Forest

CAN-CSI :: Radiometer

Coincident radiometer and scatterometer measurements from mobile sleds (89, 37, 19, 6 GHz, at 53 $^\circ$)

CAN-CSI :: Radiometer

Coincident radiometer and scatterometer measurements from mobile sleds (89, 37, 19 GHz, at 53 $^{\circ}$) – IOP1 to IOP3 (Nov.-Feb.)

Scatterometer Characteristics: Ku and X band system

Pedestal deployment with Kipp and Zonen 2AP sun tracker
Scans possible from -90° to +90° azimuth and 0° to 180° elevation
Deployed at the platform site during EOPs and at the Lake58

and Fen sites during the IOPs

Radar Parameter	Value				
RF output frequency	9.35-9.85 GHz				
Transmit power	9.5 dBm flood beam mode -11.8 dBm narrow beam mode				
Transmit bandwidth	500 MHz				
Range resolution	0.3 meters				
Antenna beamwidth	4.3 degrees, single antenna narrow beam mode 5.8 degrees, dual antenna flood beam mode				
Cross-polarization isolation	>30 dB, measured at the peak of the beam				
Transmit/receive polarizations	Linear, Vertical and Horizontal				
Sensitivity, minimum NRCS at 15 m range	$-50 \text{ dB m}^2/\text{m}^2$				
Chirp length	0.975 ms	Radar Parameter			
2 channel digitizer	16 bits, 1.25 MS/	RF output frequency			

Scatterometer Specifications

	Radar Parameter	Value
S/	RF output frequency	16.95-17.45 GHz
	Transmit power	3.5 dBm flood beam mode -8 dBm narrow beam mode
	Transmit bandwidth	500 MHz
	Range resolution	0.3 meters
	Antenna beamwidth	5.6 degrees, single antenna narrow beam7.5 degrees, dual antenna flood beam
	Cross-polarization isolation	>30 dB, measured at the peak of the beam
	Transmit/receive polarizations	Linear, Vertical and Horizontal
	Sensitivity, minimum NRCS at 15 m range	-50 dB m ² /m ²
	Chirp length	Variable, 0.1-15 ms
	2 channel digitizer	16 bits, 1.25 MS/s

Scatterometer deployment modes

Nov 2009		Dec 2009	Jan 2010		Feb 2010		Mar 2010		Apr	Apr 2010	
	IOP1	EOP1	IOP2	EOP2	IOP3	E	OP3	IOP4	EOP4	IOP5	

Platform

Roving

Scatterometer: angular responses at Ku band, narrow beam mode at platform site. Increased backscattering from snow with time (early winter)

Scatterometer: angular responses at X band, narrow beam mode at platform site: decreased sub-nivean backscattering with time (early winter)

Responses of Ku and X-band, VV and VH (flood beam mode) WET FEN SITE (IOP2 - IOP5)

Responses of Ku and X-band, VV and VH (flood beam mode) EC PLATFORM SITE (IOP2 - IOP5)

CAN-CSI :: Early results

- 1. The experiment completed two weeks ago.
- 2. Sensitivity of snow accumulation to Ku band instrument is behaving as expected: increased backscatter with accumulation.
- 3. Influence of layering, density and grain size appear to be playing an important role in the backscatter response at Ku.
- 4. Sub-nivean effects and layering (melt/refreeze events, significant depth hoar) are likely to be influencing the X band response.
- 5. Coincident radiometer observations is making possible the specific exploration of active-passive microwave relationships over tundra and frozen lake snow accumulation.
- 6. Snowpack stratigraphy and SSA measurements will provide important clues on the origin of the scattering.
- 7. Large amount of snowpit measurements and weather data will enable us to accurately characterize the snowpack at fine time resolution through the season.
- 8. A highly unique experiment that will provide a rich source of data & information to support CoReH2O science.