Observations of snowpack properties to evaluate ground-based microwave remote sensing

Nick Rutter¹, Hans-Peter Marshall², Ken Tape³, Richard Essery⁴

 ¹ Northumbria University, Newcastle upon Tyne, U.K. nick.rutter@northumbria.ac.uk
 ² Boise State University, Boise, ID, U.S.A.
 ³ University of Alaska Fairbanks, Fairbanks, AK, U.S.A.
 ⁴ University of Edinburgh, Edinburgh, U.K.

ESA Workshop on Cold Regions Hydrology: 29 April 2010

- Part of 2nd NASA Cold Land Processes Experiment
 - General goals to evaluate airborne Ku-band scatterometer
 - Our part in that was:
 - Evaluation of ground-based FMCW radar (12-18 GHz, nadir, cross-pol)
 - Heterogeneity of internal snowpack stratigraphy & impact on radar
- Thanks to Don Cline, Kelly Elder, Matthew Sturm and University of Alaska Fairbanks

- Surface roughness previously quantified (e.g. Fassnacht et al. 2009)
- Quantifying subsurface stratigraphic roughness at the centimetre scale is laborious and rarely observed (Sturm et al. 2004)
- Dielectric permittivities influenced by heterogenous internal layer stratigraphy
- Scattering influence at Ku-band requires 1-2 cm scale resolution

Heterogeneity of internal layer stratigraphy can be derived from digital photography

Fugi S9100 digital camera 9.0 Mega-Pixel NIR filter (peak transmittance at 850 nm)

NIR Photography

Dig trench and clean trench wall

NIR Photography

- Processed and georeferenced NIR images (see Tape et al. 2010. J. Glac.)
 - high resolution (0.02 cm) and low error (0.3 cm)
 - layer boundaries estimated with a median difference of <2 cm compared to field observations
- Automated stitching does not work as nodal point shifts too far (parallax)
- Auto-picking of layers not effective, better to visually pick layers

northumbria

Layer boundaries from NIR photography

FMCW Radar

Up to 14 density samples within each stratigraphic layer

Example NIR image of trench wall section (enhanced contrast)

NATURAL ENVIRONMENT RESEARCH COUNCIL

Densities

Finnish Snowfork – dielectric permittivity

 Vertical profiles (5 cm spacing) every 50 cm along trench

Dielectric Permittivities

- De-trended data (residuals from a linear best fit trend line) to remove any influence of slope
- Roughness coefficients calculated over 50 cm moving windows (replicate ~50 cm footprint of radar)
- Two roughness metrics were used (Fassnacht et al. 2009)
 - Standard deviation
 - Sum of absolute slopes

Conclusions

- NIR photography at 1 cm resolution identifies all scattering boundaries
- Major contrasts of density and dielectric permittivity aid identification of internal scattering boundaries
- Surface roughness (around internal depth hoar) explains some areas of weak backscatter
- A suite of observations are necessary to adequately test ground-based active Ku-band microwave sensors
- Future
 - NIR trench photos taken as part of April 2010 field campaigns in Churchill (Canadian CoReH20 Snow and Ice Experiment) coincident with groundbased radiometers and X- and Ku-band scatterometers
 - Link layer thicknesses variations in sensor footprints to n-layer HUT model

Extra Slides

northumbria

ENVIRONMENT RESEARCH COUNCIL

